CVE-2023-54065
net: dsa: realtek: fix out-of-bounds access
Description
In the Linux kernel, the following vulnerability has been resolved: net: dsa: realtek: fix out-of-bounds access The probe function sets priv->chip_data to (void *)priv + sizeof(*priv) with the expectation that priv has enough trailing space. However, only realtek-smi actually allocated this chip_data space. Do likewise in realtek-mdio to fix out-of-bounds accesses. These accesses likely went unnoticed so far, because of an (unused) buf[4096] member in struct realtek_priv, which caused kmalloc to round up the allocated buffer to a big enough size, so nothing of value was overwritten. With a different allocator (like in the barebox bootloader port of the driver) or with KASAN, the memory corruption becomes quickly apparent.
INFO
Published Date :
Dec. 24, 2025, 1:16 p.m.
Last Modified :
Dec. 24, 2025, 1:16 p.m.
Remotely Exploit :
No
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Affected Products
The following products are affected by CVE-2023-54065
vulnerability.
Even if cvefeed.io is aware of the exact versions of the
products
that
are
affected, the information is not represented in the table below.
No affected product recoded yet
Solution
- Ensure chip_data space is allocated in realtek-mdio.
- Apply the fix to the Linux kernel code.
- Test the driver with different allocators and KASAN.
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2023-54065.
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2023-54065 is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2023-54065
weaknesses.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2023-54065 vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2023-54065 vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Dec. 24, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: net: dsa: realtek: fix out-of-bounds access The probe function sets priv->chip_data to (void *)priv + sizeof(*priv) with the expectation that priv has enough trailing space. However, only realtek-smi actually allocated this chip_data space. Do likewise in realtek-mdio to fix out-of-bounds accesses. These accesses likely went unnoticed so far, because of an (unused) buf[4096] member in struct realtek_priv, which caused kmalloc to round up the allocated buffer to a big enough size, so nothing of value was overwritten. With a different allocator (like in the barebox bootloader port of the driver) or with KASAN, the memory corruption becomes quickly apparent. Added Reference https://git.kernel.org/stable/c/b93eb564869321d0dffaf23fcc5c88112ed62466 Added Reference https://git.kernel.org/stable/c/cc0f9bb99735d2b68fac68f37b585d615728ce5b Added Reference https://git.kernel.org/stable/c/fe668aa499b4b95425044ba11af9609db6ecf466